
Practical Steps for 
Evaluating eBPF 

Security Solutions 
for Cloud Native 

Protection

www.spyderbat.com

eB
PF

 S
ec

ur
ity

 
M

on
ito

rin
g 

Bu
ye

r’s
 

Gu
id

e



Ta
bl

e 
of

 C
on

te
nt

s
Business Case

Why invest in eBPF Security Monitoring?

What is eBPF?

Organizational Impact and Assessing Organizational Readiness

Evaluating eBPF Security Monitoring solutions

eBPF Agent

eBPF Agent Deployment and Management

Endpoint Performance Impact

Analytics

eBPF and Contextual Data Collection

Analytics Data	

Analytics Tools

Additional Considerations

Use Cases

Automated Response

Third-party integration

Day 2 Operations

Maintenance and Support

Open Platform

Conclusion

About Spyderbat

1

1

2

3

6

6

6

7

8

8

9

10

11

12

15

16

17

17

17

18

18



Business
Case

Why invest in eBPF Security Monitoring?
eBPF fundamentally changes the approach to cloud native networking, observability, and security 
by enabling in-depth monitoring and analysis of network traffic and system events at the kernel 
level. This powerful new technology provides unparalleled visibility into the runtime activities of 
Linux systems and containers. 

Gartner estimates that by 2027, “more than 90% of global organizations will be running 
containerized applications in production, which is a significant increase from fewer than 40% 
in 2021.” With containerized cloud native environments, applications are distributed across 
multiple containers and orchestrated by platforms like Kubernetes. This fundamental shift in how 
applications run impairs security monitoring tool’s ability to capture a stateful view of system and 
container activities. eBPF, on the other hand, enables real-time, low-overhead instrumentation 
at the Linux kernel, allowing deep insights into the network stack, system calls, and other critical 
events. This level of visibility empowers security teams to detect and respond to potential threats 
more effectively, identifying a wide range of supply chain compromises, insider threats, and 
external attacks. 

Investing in an eBPF Security Monitoring program for runtime visibility gives organizations the 
ability to proactively identify and mitigate security risks, effectively monitor their environments, 
and ensure the integrity and availability of their applications and data. With the rapid growth of 
cloud native architectures, eBPF has emerged as a vital technology for runtime security monitoring 
in modern enterprises.

Sp
yd

er
ba

t -
 e

BP
F 

Se
cu

rit
y 

M
on

ito
rin

g 
Bu

ye
r’s

 G
ui

de

1



What is eBPF?
eBPF is a technology built into modern Linux kernels that allows sandboxed programs to run in a 
privileged context. In effect, eBPF puts a listening device on another running program to observe its 
behavior. eBPF programs are verified at load time to ensure that they run to completion in a limited 
time, and that all the memory access is safe, to avoid Kernel panics and memory crashes.

Since eBPF operates at the kernel level, it provides the ability to see incredible amounts of 
application execution behavior, making eBPF uniquely suited for solving observability problems 
that are difficult or often impossible to do by collecting, storing and aggregating various disparate 
logs from unrelated application systems.  

Comparing eBPF to auditd (the traditional Linux auditing framework), shows that while both share 
some common capabilities such as monitoring for system calls, file access, and other configurable 
events, auditd falls far short of eBPF for system-level visibility into modern cloud and multi-cloud 
environments. In particular, auditd:

•	 Creates excessive userspace syscall overhead.
•	 Often shows invocations such as execveat without revealing what they were called on.
•	 Is inherently container unaware.

In contrast, eBPF programs run more efficiently than auditd, provide user attribution, and are 
container aware. 

Previous methods to abstract Linux kernel-level data required kernel modification or kernel 
modules. Altering the Linux kernel raises stability, security, and performance risks. It also requires 
manual effort to “re-modify” the kernel, with each kernel update creating upgrade challenges and 
application compatibility conflicts. As a result, eBPF has become the preferred method for Linux 
instrumentation. 

Sp
yd

er
ba

t -
 e

BP
F 

Se
cu

rit
y 

M
on

ito
rin

g 
Bu

ye
r’s

 G
ui

de

2



Organizational Impact and Assessing 
Organizational Readiness
Implementing an eBPF Security Monitoring program impacts different parts of the buyer’s 
organization:

Sp
yd

er
ba

t -
 e

BP
F 

Se
cu

rit
y 

M
on

ito
rin

g 
Bu

ye
r’s

 G
ui

de

3

In smaller, ‘born-in-the-cloud’ organizations, many of these roles and responsibilities are collapsed 
to a few individuals who operate within engineering.  In larger organizations that have these are 
often distinct teams across engineering, IT, and security groups, possibly with a governing center of 
excellence. This section will outline the organizational considerations, regardless of company size.

Before implementing an eBPF Security Monitoring program, organizations should assess the impact 
of monitoring both existing assets and how to account for future feature and application growth.



Sp
yd

er
ba

t -
 e

BP
F 

Se
cu

rit
y 

M
on

ito
rin

g 
Bu

ye
r’s

 G
ui

de

4

Cloud and Security Architecture
In most cloud native environments, organizations choose to extend their eBPF Security Monitoring 
throughout integration, staging, and production environments. There are at least three reasons to 
focus exclusively on production environments, 
•	 Every environment hosted on a cloud platform includes the same risk of compromise.
•	 Catch supply chain compromise and insider threats during the development processes.
•	 Baseline expected application behaviors before moving to production.

To determine the scope of an eBPF Security Monitoring program, teams should:
•	 Evaluate applications by business risk to the buyer’s organization should they become 

compromised.
•	 Determine infrastructure coverage for eBPF monitoring (e.g., Linux VMs, managed Kubernetes, 

etc.). eBPF may not cover serverless infrastructure (e.g., Fargate, Lambdas, etc.) 
•	 Consider which processes (both in terms of workflow and automation) can be implemented to 

ensure evaluation and monitoring of new functional areas and applications?

Development
Many organizations are shifting security “left,” extending some security responsibility to developers 
and/or DevOps teams who can implement solutions earlier in the development process. 
•	 Will developers/devops validate application and container behaviors as part of their CI/CD 

process?

Site Reliability and Platform Engineering
Some organizations have elected Platform or Site Reliability Engineering team members to initially 
triage eBPF Security Monitoring detections since it will not yet be known if the issue is operational 
or security in nature. 

•	 What responsibility will Site Reliability or Platform Engineering take to triage eBPF security 
detections, if any?

•	 How will first responders collaborate with developers, architects, platform engineers, or security 
engineers?



Sp
yd

er
ba

t -
 e

BP
F 

Se
cu

rit
y 

M
on

ito
rin

g 
Bu

ye
r’s

 G
ui

de

5

Security Engineering
The goal of the eBPF Security Monitoring program is to equip security engineers with security 
context regarding activities in cloud native environments. 
•	 How will eBPF findings be integrated into existing security infrastructure, such as SIEM, SOAR, or 

ticket tracking systems?

Security Incident Response
The workflow for detections raised by the eBPF Security Monitoring program will need to be defined. 

Different workflow examples include:
•	 Send all eBPF security program detections (regardless of environment) to the security team for 

initial analysis, then collaborate or escalate to others based on whether the issue appears to be 
introduced by new runtime code, platform changes, or an external actor. 

•	 Send all eBPF security program detections (regardless of environment) to the Site Reliability 
Engineering team for initial analysis, then collaborate or escalate to others based on whether 
the issue appears to have been introduced by new runtime code, platform changes, or an 
external actor. 

•	 Send eBPF security program detections from integration environments to developers, from 
staging to site reliability engineers, and from production to security analysts.

To determine an optimal solution:
•	 Is there a default first responder, or should it vary by environment (e.g., integration, staging, or 

production)?
•	 What context is important to first responders (e.g., cloud provider, Kubernetes namespace, 

internal application name, previous container behavior, etc.)?

Lastly, consider how often workflows should be reviewed and assessed moving forward.



Evaluating eBPF 
Security Monitoring 
solutions

eBPF Agent

eBPF Agent Deployment and Management

An eBPF Security Monitoring program requires the use of an agent on Linux nodes running 
containers (e.g., worker nodes). Solutions should not leverage sidecar or kernel mods/modules 
given the significant disadvantages to deployment, ongoing management, and visibility.  An agent 
approach provides a means for executing eBPF programs, efficiently collecting the output of these 
programs, and transferring eBPF program output for centralized monitoring.

Deploying the solution is a critical area of evaluation since in ephemeral cloud and containerized 
environments, nodes will auto-provision on a regular basis. Evaluation criteria should focus on 
deployment speed and ease, requiring as few steps as possible prior to seeing value from the 
solution.

Sp
yd

er
ba

t -
 e

BP
F 

Se
cu

rit
y 

M
on

ito
rin

g 
Bu

ye
r’s

 G
ui

de

6



Endpoint Performance Impact

Evaluation criteria regarding the performance of the eBPF agent sits across five dimensions: CPU, 
memory, eBPF, data storage, and data transfer.

Endpoint Performance Worksheet

 Microsoft’s project, eBPF for Windows, aims to support eBPF programs on their Operating System. 

Sp
yd

er
ba

t -
 e

BP
F 

Se
cu

rit
y 

M
on

ito
rin

g 
Bu

ye
r’s

 G
ui

de

7

Deployment and Management Worksheet

Questions to Ask What to look for

Deployment •	 What methods are used to 
deploy the eBPF Agent?

•	 How quickly will the eBPF Agent 
begin producing data?

•	 What data entry about the 
network and Kubernetes 
environment is required by the 
operator (if any)?

The solution should support an 
automated method aligned to the 
buyer’s cloud and/or Kubernetes 
provisioning method for deployment 
such as ‘helm’, Hashicorp Terraform, 
AWS Cloud Formations, or Ansible. 

The solution should automatically learn 
the runtime environments without any 
data entry.

Management •	 Are there different agent types?
•	 Are multiple agents required 

(network, process, cluster, etc.)
•	 How is the agent upgraded?
•	 How is health information 

collected about the agent? 
•	 Is agent management included 

with the solution or require 
third-party services?

Avoid solutions that require different 
agents for each Cloud provider, Linux 
distribution and/or kernel version 
as this creates issues upgrading and 
expanding.

Agents should self-update and be 
centrally managed within the solution.

Questions to Ask What to look for

CPU •	 What is the average CPU load? 
•	 Is analysis performed on the 

endpoint or offloaded to a 
backend service?

•	 Will more activity equate to 
higher CPU usage?

CPU load should be <2% during average 
levels of activity of the node.

The solutions’ analytics should be 
offloaded from the buyer’s cloud 
nodes.

https://thenewstack.io/microsoft-brings-ebpf-to-windows/


Sp
yd

er
ba

t -
 e

BP
F 

Se
cu

rit
y 

M
on

ito
rin

g 
Bu

ye
r’s

 G
ui

de

8

Questions to Ask What to look for

Memory •	 What data is stored in memory? 
•	 Is data stored in memory 

encrypted?

Memory use should be <2.5% during the 
average activity levels of the node.

eBPF •	 What type of data does the eBPF 
agent capture?

•	 Can the eBPF program lose data 
during peak times due to buffer 
overload issues?

With eBPF, it is possible to access 
exhaustible amounts of detail about 
Kernel-level transactions. Take 
precaution, as eBPF will drop system 
call events if attempting to collect 
too much data during high levels of 
activity. 

Does the eBPF data collected align to 
meet use cases? 

Data Storage •	 How much disk space is required 
on the endpoint? 

•	 What happens when disk space 
is exceeded?

•	 Is stored data encrypted?
•	 Is data compressed? If so, what 

are average compression rates?

The solution should have customizable 
disk space controls to prevent 
overusing data storage. 

All data stored should be encrypted 
and compressed.

Data Transfer •	 How much bandwidth utilization 
is required?

•	 Does the agent require 
communication with a central 
server? What happens if 
communication is interrupted?

•	 Is transferred data encrypted?
•	 Is transferred data compressed? 

If so, what are average 
compression rates?

Bandwidth should average <100 Kb/
second during average activity levels of 
the node.

In the case of a network interruption, 
the agent should cache locally to 
ensure no loss of data.

All data should be encrypted and 
compressed in transit.

Analytics
eBPF and Contextual Data Collection

While eBPF is a powerful data source for observability, observability does not equate to security. To 
meet security use cases, analytics needs data from eBPF and additional contextual data sources. 
For this reason, this section is broken into two parts, analytics data and analytics tools. In this first 
part, we evaluate the eBPF Security Monitoring solution by its level of visibility generated by eBPF 
and other contextual information.



Sp
yd

er
ba

t -
 e

BP
F 

Se
cu

rit
y 

M
on

ito
rin

g 
Bu

ye
r’s

 G
ui

de

9

Captured Activity Examples

Process information •	 Process start time
•	 Process end time
•	 Parent process
•	 Children processes
•	 Complete command line
•	 User and user rights context

Network information •	 Directionality
•	 Source and destination IP address/hostname
•	 Fully Qualified Domain Name
•	 Bytes transferred
•	 Connection duration
•	 Related process
•	 Host and container name

User information •	 User and effective user rights associated with each process

Host context •	 Hostname
•	 IP address(es)
•	 Memory utilization
•	 CPU utilization
•	 OS architecture

Container context For each container:
•	 Start time
•	 End time
•	 Process details
•	 Network connection details
•	 The image the container launched from

Kubernetes context •	 Cluster name
•	 Namespace
•	 Service
•	 Pod
•	 Replica set

Cloud provider 
context

•	 Cloud image ID
•	 Instance ID
•	 Region ID
•	 Cloud tags
•	 Identity roles

Analytics Data

It is important to evaluate the eBPF data and contextual data gathered by the solution to meet with 
use cases. 

Analytics Data Worksheet



Sp
yd

er
ba

t -
 e

BP
F 

Se
cu

rit
y 

M
on

ito
rin

g 
Bu

ye
r’s

 G
ui

de

10

Analytics Tools

This section evaluates how the buyer’s team will interact with the collected data and how the 
solution identifies areas of concern.

Analytics Tools Worksheet

Available Tools Questions to Ask What to look for

Search •	 What information 
is indexed and 
searchable by the 
solution?

•	 How are search results 
presented? 

•	 Can the results of 
multiple queries be 
combined for analysis? 

Search by: 
•	 Commands with command line 

arguments
•	 Commands with user context
•	 Processes with parent process context
•	 IP addresses, hostnames, and fully 

qualified domain names
Combining search results into a common 
analysis view expedites investigation. 

Discover •	 Is there a topology 
view or visualization 
of the running 
Kubernetes 
environment? 

•	 Does the visualization 
support real-time and 
historic views? What 
length of history is 
maintained?

Be cautious of solutions that provide 
visualizations that work with a few nodes, 
but become challenging, if not impossible 
to read with normal levels of activity. Ask 
the vendor to show real-world usage in their 
demonstrations.

Visualizations should be stateful as of each 
change rather than periodic snapshots, 
which may miss key events. The solution 
should maintain a 90-day history of activity.

Container or 
Application 
Profiling

•	 How granularly does 
the solution identify 
application drift at 
runtime?

•	 How are application 
drift policies 
generated?

The solution should be able to capture 
the exact processes and network details 
that deviate from validated states at 
runtime. Solutions that only identify new 
packages miss ad hoc changes within 
installed applications (e.g., supply chain 
compromise). 

Solutions should suggest policies based on 
actual application workload behaviors. Be 
cautious of out-of-box policies for standard 
applications due to the high levels of tuning 
required to adhere to policies for actual 
application use.

Security 
Detections

•	 Do security detections 
follow a known 
framework?

•	 Does the solution 
allow customization? If 
so, what programming 
level is required?

Security detections should follow a known 
framework, such as MITRE ATT&CK.

Be cautious of black-box machine learning 
that makes it challenging to understand 
why detections trigger or that auto-tunes 
unresolved detections. Complex machine 
learning models may be more challenging to 
tune to each application environment. 



Sp
yd

er
ba

t -
 e

BP
F 

Se
cu

rit
y 

M
on

ito
rin

g 
Bu

ye
r’s

 G
ui

de

11

Type Details

Criteria is too broad If the criteria for detecting a security event is defined too broadly, the 
detection will trigger on innocuous events. For example, the criteria 
“shell executed in a container” may align to best practices, but in 
practice, many applications use a shell to execute code.

Anomaly without 
security context

Machine Learning identifies anomalies that are not necessarily security 
relevant. For example, the first time an application connects to an S3 
bucket may be a true anomaly, but also a legitimate new data source 
for the application. New events occur frequently in cloud native 
environments. How does the vendor reduce detecting true anomalies 
without security relevancy?

Application-Specific 
Default Policies

Vendors may include application-specific default policies that align 
with their understanding of how the application should behave. The 
nature of cloud native development is customization and iteration. 
Does the vendor include tuning requirements to align application-
specific policies with actual usage?

Additional Considerations

False Positives
While completely avoiding false positives may be an unrealistic goal, the solution should provide 
means for accounting for each environment in order to reduce false positives without relying on 
manual tuning. 

There are several reasons for false positives:

The solution should employ methods for reducing false positives. Some methods are:
•	 Risk/Threat scoring: Risk scores consider other contexts such as the environment, user, etc. to 

increase or decrease the severity of the detection.
•	 Detection chaining: Chaining individual, atomic detections into a “grouped” detection reduces 

false positives by corroborating evidence of an attack. Be wary of the methods used to chain 
detections as it may fall in the ‘Criteria is too broad’ category of false positives.

•	 Watch out for systems that “auto-tune” findings with Machine Learning algorithms. Product 
feedback indicates these systems begin suppressing potentially legitimate concerns simply 
because human analysts were not able to engage with the findings in a timely manner, 
effectively ‘training’ the system to avoid these findings. Be sure to directly control alert tuning 
to ensure alignment to organizational risk tolerance.



Sp
yd

er
ba

t -
 e

BP
F 

Se
cu

rit
y 

M
on

ito
rin

g 
Bu

ye
r’s

 G
ui

de

12

Profile application behavior Builds a profile of applications at runtime, using the process 
details, network details, and user context.

Validated application behavior Enables developers to validate correct application behaviors 
to avoid accepting compromised behaviors into any baseline.

Identify application behavior 
deviations at runtime

Recognizes new behaviors (application drift) outside of 
validated behaviors.

Present validated and deviated 
runtime behaviors

Presents both the previously accepted workload behavior and 
deviated behaviors to expedite the investigation.

False Negatives
A false negative is a security detection that the solution should have identified but did not. The 
most common reason for a false negative is the detection criteria are too narrow. For example, an 
‘Indicator of Compromise’ that specifies the file hash for a file containing malware is easily evaded 
when the threat actor makes a simple change to the file. In practice, false negatives occur from 
over-tuning rules to become too narrow. When evaluating the methods for managing false negatives 
(as described previously), consider the impact on false negatives since methods relying on tuning 
risk higher false negative rates.  

Use Cases

While it is important to assess the analytic capabilities of the solution, at the end of the day, the 
solution needs to solve relevant use cases for the buyer’s organization. Below are examples of use 
cases and how to evaluate the effectiveness of the solution.

Use Case - Supply Chain Compromise
A supply chain compromise is the manipulation of software, or its delivery mechanisms, before 
receipt by the end user. Modern software development includes dependencies on both third-party 
and open-source components, creating a greater risk of falling victim to supply chain compromise 
even when following best security practices. 

An eBPF security program can be used to detect evidence of a supply chain compromise early in 
the development process to avoid the loss of confidential data or other damaging steps. There are 
minimally two challenges in identifying supply chain compromise: 
•	 Unless previously disclosed, the compromise is a ‘zero-day’ so vulnerability scanning will not 

detect it.
•	 In supply chain attacks, malware is often programmed to wait long periods of time to detonate 

when used in production environments.

To detect supply chain compromise, the eBPF Security Monitoring solution will need to:



Sp
yd

er
ba

t -
 e

BP
F 

Se
cu

rit
y 

M
on

ito
rin

g 
Bu

ye
r’s

 G
ui

de

13

Track application behavior 
with user context

Captures all process details for the authenticated user that 
triggered the process.

Track changes to effective user 
rights

Linux commands such as sudo or su allow users to change 
their effective rights without an authentication event.

Track and connect user 
sessions across systems or 
containers

Tracks the original authenticated user even if different 
accounts are used in subsequent commands or connection 
methods (e.g., ssh, scp, etc.).

Identifies application behavior 
deviation at runtime with user 
context

Presents previously accepted workload behaviors and 
deviated behaviors with user context (who did what).

Use Case - Insider Threat
Insider threats are people with legitimate access to the network who use their access in a way that 
causes harm to the organization. Examples include a disgruntled employee or a contractor with 
compromised credentials.

While it is important to implement roles-based access controls in Kubernetes orchestration and 
cloud identity access management, insider threats may have been provided explicit access or taken 
advantage of broad access controls. An eBPF security program can identify evidence of insider 
threat. The challenges of detecting this type of attack are:
•	 Identifying behavior deviations of legitimate users. 
•	 Identifying correct user attribution when using shared accounts such as ec2-user or root.

To detect insider threats, the eBPF Security Monitoring solution will need to:



Sp
yd

er
ba

t -
 e

BP
F 

Se
cu

rit
y 

M
on

ito
rin

g 
Bu

ye
r’s

 G
ui

de

14

Detecting behaviors or 
patterns of known attack 
tactics 

The solution should follow a known framework for identifying 
attack tactics and techniques. 

Connect detected attack 
tactics across time

The solution should automatically identify connections 
between attack tactics and techniques. 

Suppressing false positives 
with methods described 
previously

The solution should reduce false positives to avoid 
overwhelming the team when responding to real threats.

Present first responders with 
context 

First responders need context of what occurred before, 
between, and after detections, as well as where, when 
these detections occur within the environment or across 
environments.

Use Case - External Attack
While preventative security methods for patching known vulnerabilities reduce the attack surface 
available to an external threat actor, it is impossible to completely cleans the environment of 
all known vulnerabilities. Organizations need to prepare for the inevitable intrusion that evades 
preventative security measures. Threat actors have varying financial and political motivations, 
leading to customer and employee data theft, ransomware, cryptojacking, and network disruption.

An eBPF security solution should identify evidence of intrusion to enable quick containment and 
remediation of attackers that enter the environment. The challenges with identifying external 
attacks are:
•	 Reducing false positives while avoiding false negatives.
•	 Slow and low attacks that span weeks to months.

To detect external attacks, the eBPF Security Monitoring solution will need to:



Sp
yd

er
ba

t -
 e

BP
F 

Se
cu

rit
y 

M
on

ito
rin

g 
Bu

ye
r’s

 G
ui

de

15

Automated Response
Due to the ephemeral nature of our cloud environments, and as we enter an age of AI assisted 
attacks, it becomes increasingly critical that our detection solutions are also capable of automating 
response.

The effectiveness of the detections is paramount.  Without accuracy, it is impossible to enable 
automation. Confidence in the accuracy of detections enable the transition to automated responses 
that contain and, in some cases, even fully remediate threats.

Automated Response Worksheet

Questions to Ask What to look for

Response 
Execution

•	 Where do responses 
execute?

•	 What permissions are 
required to enable 
automated responses?

Automated responses should execute on 
the worker node itself. Network-based 
responses risk interference with systems 
and network-based access controls.

Response Library •	 What types of 
automated responses 
are available?

•	 Do responses leverage 
contextual data (e.g., 
parent processes, 
namespaces)?

While it is positive for the solution to 
include a broad set of available responses, 
ultimately responses need to align with the 
buyer’s specific use cases.  

Context is important. Killing an individual 
process may not contain a threat if malware 
is left running to retry, or the threat actor 
still has access to backdoors.

Implementation •	 Does enabling 
responses change 
the agent type and 
Installation process?

Be cautious if the response requires 
additional licensing or changes the 
deployment type.

Customization •	 Can automated 
responses be 
customized?

•	 If so, what skill or 
programming level is 
required?

Solutions should support custom scripts 
appropriate to the environment and the 
buyer’s use cases.



Sp
yd

er
ba

t -
 e

BP
F 

Se
cu

rit
y 

M
on

ito
rin

g 
Bu

ye
r’s

 G
ui

de

16

Third-party integration
From small companies just building their security program to large organizations with established 
security infrastructure, the eBPF Security Monitoring solution will need to support bi-directional 
integration into existing and future investments and workflows. 

Third-party Integration Worksheet

Questions to Ask What to look for

Outbound integration 
•	 SIEM, SOAR, and ticket 

management systems
•	 Pagerduty, Slack, Teams

The solution should adhere to each organization’s 
operational workflows, providing full context to their 
raised alerts with the ability to quickly return to the 
eBPF Security Monitoring solution for further analysis, 
when required. 

Inbound integration 
•	 Kubernetes API
•	 Cloud Provider (e.g., cloud tags, 

hostnames)

The solution should be able to consume additional 
context regarding eBPF activities.



Open Platform
This document previously covered third-party integrations. Support for custom development is 
equally important. A bi-directional API enables additional context inputs outside the vendor’s 
supported integrations and the ability to display information appropriately to different consumers 
within each organization. When evaluating the vendor’s API, it is important to understand:
•	 What is and is not exposed.
•	 What is and is not documented.
•	 Includes working examples in the documentation.
•	 How the API is impacted during upgrades.

Day 2 
Operations

Maintenance and Support
Maintenance and Support Worksheet

Sp
yd

er
ba

t -
 e

BP
F 

Se
cu

rit
y 

M
on

ito
rin

g 
Bu

ye
r’s

 G
ui

de

17

Questions to Ask What to look for

Maintenance •	 What levels of support does 
the vendor offer?

•	 Are professional services 
included?

The solution should support a 
maintenance operational model that 
aligns with the buyer, whether business 
appropriate time zones or 24x7. 

Understand the costs to upgrade and 
expand.

Data storage •	 Is the solution SaaS or on-
premise? 

•	 Are data storage 
responsibilities the 
customer’s or vendor’s? 

•	 What are the data retention 
policies?

•	 Can all data be removed 
should the service be 
discontinued?

On-premise storage and management 
costs can be significant, providing an 
advantage to SaaS solutions. Ensure 
SaaS solutions leverage regional data 
centers and abide by any required data 
sovereignty regulations.  



Conclusion
An eBPF Security Monitoring program is a critical component for organizations embracing cloud native environments. 
The adoption of eBPF as a powerful observability tool has the potential to revolutionize security event analysis and 
incident response by empowering organizations with critical insights at runtime. By leveraging eBPF’s capabilities, 
organizations strengthen their cloud native security posture, mitigate risks, and protect their valuable assets 
effectively.

Organizations should choose a solution for their eBPF Security Monitoring that excels at identifying security issues, 
aligns with continuous development workflows and security operations, and integrates with existing security 
investments.

About Spyderbat
Marc Willebeek-LeMair and Brian Smith stood in the security operations center for a large managed security 
services firm, observing security analysts respond to alert after alert in a race to meet with the firm’s service 
level agreements. As each alert came in, an analyst immediately delved into logs and audit records in a manual 
attempt to recreate the scenario and answer fundamental questions - is this a false positive, and if not, what 
is the scope and entry point of the attack, etc.  The manual effort was an exhausting search across esoteric 
log data manually ‘connecting the dots’, assuming key events were even logged. Not surprisingly, results often 
ended inconclusive.  The observation led Willebeek-LeMair and Smith to an idea.

Why is every security program facing an uncomfortable tradeoff between accepting high false positive rates, 
requiring large teams to manually investigate, or tuning signals down and accepting the risk of false negatives? 
The answer, they concluded, was context.

Alerts trigger from data meeting specific criteria or the parameters of an anomalous outlier, without any 
understanding of what activities both led to or followed the trigger.  

This security formula is ineffective even in traditional networking environments where there are a high number 
of security controls providing detailed telemetry. What happens in highly ephemeral environments where 
variables constantly change, and security controls are sparse?

Willebeek-LeMair and Smith realized that cloud-native environments needed a constant state recorder that 
went beyond audit records - it had to know the causal sequence of activities for every activity. 

Spyderbat was founded with this idea.

Using eBPF, Spyderbat constantly builds a Behavioral Context Web that connects every activity to each other 
along with system, cloud platform, container, and Kubernetes context. Using this Web, Spyderbat simultaneously 
looks for deviations from ‘known-good’ workload behaviors while also connecting otherwise disparate security 
concerns to identify ‘known-bad’ attack tactics. The result is a cloud-native runtime security solution that 
removes the uncomfortable trade off by scoring every causal sequence of activities by its risk, exponentially 
reducing false positives, and surfacing truly concerning sets of activities that programmatic actions can remedy 
or notify the correct groups across DevOps and SecOps. 

Learn more about Spyderbat at www.spyderbat.com

https://www.spyderbat.com/

