() SPYDERBAT

ity
Ing Buyer’s

oni

Practical Steps for
Evaluating eBPF
Security Solutions
for Cloud Native
Protection

-
-
=
n 3
-
Q.
o
Q

4
5 M

www.spyderbat.com

Table of Contents

Business Case
Why invest in eBPF Security Monitoring?
What is eBPF?
Organizational Impact and Assessing Organizational Readiness
Evaluating eBPF Security Monitoring solutions
eBPF Agent
eBPF Agent Deployment and Management
Endpoint Performance Impact
Analytics
eBPF and Contextual Data Collection
Analytics Data
Analytics Tools
Additional Considerations
Use Cases
Automated Response
Third-party integration
Day 2 Operations
Maintenance and Support
Open Platform
Conclusion

About Spyderbat

10
1
12
15
16
17
17
17

18

18

BUSINeSsS
Case

Spyderbat - eBPF Security Monitoring Buyer’s Guide

Why invest in eBPF Security Monitoring?

eBPF fundamentally changes the approach to cloud native networking, observability, and security
by enabling in-depth monitoring and analysis of network traffic and system events at the kernel
level. This powerful new technology provides unparalleled visibility into the runtime activities of
Linux systems and containers.

Gartner estimates that by 2027, “more than 90% of global organizations will be running
containerized applications in production, which is a significant increase from fewer than 40%

in 2021." With containerized cloud native environments, applications are distributed across
multiple containers and orchestrated by platforms like Kubernetes. This fundamental shift in how
applications run impairs security monitoring tool’s ability to capture a stateful view of system and
container activities. eBPF, on the other hand, enables real-time, low-overhead instrumentation

at the Linux kernel, allowing deep insights into the network stack, system calls, and other critical
events. This level of visibility empowers security teams to detect and respond to potential threats
more effectively, identifying a wide range of supply chain compromises, insider threats, and
external attacks.

Investing in an eBPF Security Monitoring program for runtime visibility gives organizations the
ability to proactively identify and mitigate security risks, effectively monitor their environments,
and ensure the integrity and availability of their applications and data. With the rapid growth of
cloud native architectures, eBPF has emerged as a vital technology for runtime security monitoring

in modern enterprises.

[+}]
=
=
O
wn
[
(<]
>
=
o0
o)
(=
‘=
=]
5=
c
[=]
=
2
=
=]
(@]
[+]
n
L
o
o
[\)
1
)
(5]
o]
—
)]
©
P
Q.
(7]

What is eBPF?

eBPF is a technology built into modern Linux kernels that allows sandboxed programs to run in a
privileged context. In effect, eBPF puts a listening device on another running program to observe its
behavior. eBPF programs are verified at load time to ensure that they run to completion in a limited
time, and that all the memory access is safe, to avoid Kernel panics and memory crashes.

Since eBPF operates at the kernel level, it provides the ability to see incredible amounts of
application execution behavior, making eBPF uniquely suited for solving observability problems
that are difficult or often impossible to do by collecting, storing and aggregating various disparate
logs from unrelated application systems.

Comparing eBPF to auditd (the traditional Linux auditing framework), shows that while both share
some common capabilities such as monitoring for system calls, file access, and other configurable
events, auditd falls far short of eBPF for system-level visibility into modern cloud and multi-cloud
environments. In particular, auditd:

« Creates excessive userspace syscall overhead.
« Often shows invocations such as execveat without revealing what they were called on.

+ Isinherently container unaware.

In contrast, eBPF programs run more efficiently than auditd, provide user attribution, and are

container aware.

Previous methods to abstract Linux kernel-level data required kernel modification or kernel
modules. Altering the Linux kernel raises stability, security, and performance risks. It also requires
manual effort to “re-modify” the kernel, with each kernel update creating upgrade challenges and
application compatibility conflicts. As a result, eBPF has become the preferred method for Linux

instrumentation.

()
o
=]
(L)
wn
o
<)
>
=
(2}
o)
(=
‘=
=]
5=
c
[=]
=
2
‘=
=]
(8]
()]
n
L
o
(aa]
Qv
1
)
1]
o]
Y
(%]
©
>
(=3
n

Organizational Impact and Assessing
Organizational Readiness

Implementing an eBPF Security Monitoring program impacts different parts of the buyer’s

organization:

Cloud
and Security
Architecture

Security
Incident Development

Response e B P F

Security
Monitoring

Site
Security Reliability and

Engineering Platform
Engineering

In smaller, ‘born-in-the-cloud’ organizations, many of these roles and responsibilities are collapsed
to a few individuals who operate within engineering. In larger organizations that have these are
often distinct teams across engineering, IT, and security groups, possibly with a governing center of
excellence. This section will outline the organizational considerations, regardless of company size.

Before implementing an eBPF Security Monitoring program, organizations should assess the impact
of monitoring both existing assets and how to account for future feature and application growth.

(%}
=
=]
O
w
[
[
>
=
om
on
(=
‘=
(=]
5=
c
(=]
=
2
‘=
=]
(8]
()}
n
L
o
[a]
Q
1
)
1]
o]
Y
[}
©
Py
(=3
%]

Cloud and Security Architecture

In most cloud native environments, organizations choose to extend their eBPF Security Monitoring
throughout integration, staging, and production environments. There are at least three reasons to
focus exclusively on production environments,

« Every environment hosted on a cloud platform includes the same risk of compromise.

« Catch supply chain compromise and insider threats during the development processes.

+ Baseline expected application behaviors before moving to production.

To determine the scope of an eBPF Security Monitoring program, teams should:

« Evaluate applications by business risk to the buyer’s organization should they become
compromised.

« Determine infrastructure coverage for eBPF monitoring (e.g., Linux VMs, managed Kubernetes,
etc.). eBPF may not cover serverless infrastructure (e.g., Fargate, Lambdas, etc.)

« Consider which processes (both in terms of workflow and automation) can be implemented to
ensure evaluation and monitoring of new functional areas and applications?

Development

Many organizations are shifting security “left,” extending some security responsibility to developers

and/or DevOps teams who can implement solutions earlier in the development process.

« Will developers/devops validate application and container behaviors as part of their CI/CD
process?

Site Reliability and Platform Engineering

Some organizations have elected Platform or Site Reliability Engineering team members to initially
triage eBPF Security Monitoring detections since it will not yet be known if the issue is operational
or security in nature.

« What responsibility will Site Reliability or Platform Engineering take to triage eBPF security
detections, if any?

« How will first responders collaborate with developers, architects, platform engineers, or security
engineers?

(%}
=
=
(&)
)
[
[
>
=]
(aa]
on
c
=
=]
5=
c
o
=
2
=
=
(8}
()}
n
L
o
o
Q
1
)
(5]
o]
1
[}
©
>
(=3
(7]

Security Engineering

The goal of the eBPF Security Monitoring program is to equip security engineers with security

context regarding activities in cloud native environments.

« How will eBPF findings be integrated into existing security infrastructure, such as SIEM, SOAR, or
ticket tracking systems?

Security Incident Response
The workflow for detections raised by the eBPF Security Monitoring program will need to be defined.

Different workflow examples include:

« Send all eBPF security program detections (regardless of environment) to the security team for
initial analysis, then collaborate or escalate to others based on whether the issue appears to be
introduced by new runtime code, platform changes, or an external actor.

« Send all eBPF security program detections (regardless of environment) to the Site Reliability
Engineering team for initial analysis, then collaborate or escalate to others based on whether
the issue appears to have been introduced by new runtime code, platform changes, or an
external actor.

+ Send eBPF security program detections from integration environments to developers, from
staging to site reliability engineers, and from production to security analysts.

To determine an optimal solution:

+ Isthere a default first responder, or should it vary by environment (e.g., integration, staging, or
production)?

+ What context is important to first responders (e.g., cloud provider, Kubernetes namespace,
internal application name, previous container behavior, etc.)?

Lastly, consider how often workflows should be reviewed and assessed moving forward.

valuating eBPF

Security Monitoring
SOLtIoNS

<)
=
=
(L)
wn
S
(<]
>
=]
[aa]
o)
c
=
(=]
5=
c
o
=3
>
=)
=
=
(8}
[+]
(72}
L
o
o
Qv
1
)
(5]
o]
—
(]
©
>
Q.
(2]

eBPF Agent

An eBPF Security Monitoring program requires the use of an agent on Linux nodes running
containers (e.g., worker nodes). Solutions should not leverage sidecar or kernel mods/modules
given the significant disadvantages to deployment, ongoing management, and visibility. An agent
approach provides a means for executing eBPF programs, efficiently collecting the output of these
programs, and transferring eBPF program output for centralized monitoring.

eBPF Agent Deployment and Management

Deploying the solution is a critical area of evaluation since in ephemeral cloud and containerized
environments, nodes will auto-provision on a regular basis. Evaluation criteria should focus on
deployment speed and ease, requiring as few steps as possible prior to seeing value from the

solution.

(%}
=
=
(&)
)
[
[
>
=]
(aa]
on
c
=
=]
5=
c
o
=
2
=
=
(8}
()}
n
L
o
o
Q
1
)
(5]
o]
1
[}
©
>
(=3
(7]

Deployment and Management Worksheet

Questions to Ask What to look for

Are multiple agents required
(network, process, cluster, etc.)
How is the agent upgraded?
How is health information
collected about the agent?

Is agent management included
with the solution or require
third-party services?

Deployment + What methods are used to The solution should support an
deploy the eBPF Agent? automated method aligned to the
+ How quickly will the eBPF Agent buyer’s cloud and/or Kubernetes
begin producing data? provisioning method for deployment
+ What data entry about the such as ‘helm’, Hashicorp Terraform,
network and Kubernetes AWS Cloud Formations, or Ansible.
environment is required by the
operator (if any)? The solution should automatically learn
the runtime environments without any
data entry.
Management | - Are there different agent types? Avoid solutions that require different

agents for each Cloud provider, Linux
distribution and/or kernel version

as this creates issues upgrading and
expanding.

Agents should self-update and be
centrally managed within the solution.

Microsoft’s project, eBPF for Windows, aims to support eBPF programs on their Operating System.

Endpoint Performance Impact

Evaluation criteria regarding the performance of the eBPF agent sits across five dimensions: CPU,

memory, eBPF, data storage, and data transfer.

Endpoint Performance Worksheet

Questions to Ask What to look for

CPU

What is the average CPU load?
Is analysis performed on the
endpoint or offloaded to a
backend service?

Will more activity equate to
higher CPU usage?

CPU load should be <2% during average
levels of activity of the node.

The solutions’ analytics should be
offloaded from the buyer’s cloud
nodes.

https://thenewstack.io/microsoft-brings-ebpf-to-windows/

(%}
=
=]
O
w
[
[
>
=
om
on
(=
‘=
(=]
5=
c
(=]
=
2
‘=
=]
(8]
()}
n
L
o
[a]
Q
1
)
1]
o]
Y
[}
©
Py
(=3
%]

Questions to Ask What to look for

on the endpoint?

What happens when disk space
is exceeded?

Is stored data encrypted?

Is data compressed? If so, what
are average compression rates?

Memory - What data is stored in memory? Memory use should be <2.5% during the
+ Is data stored in memory average activity levels of the node.
encrypted?
eBPF - What type of data does the eBPF | With eBPF, it is possible to access
agent capture? exhaustible amounts of detail about
« Can the eBPF program lose data Kernel-level transactions. Take
during peak times due to buffer precaution, as eBPF will drop system
overload issues? call events if attempting to collect
too much data during high levels of
activity.
Does the eBPF data collected align to
meet use cases?
Data Storage | - How much disk space is required | The solution should have customizable

disk space controls to prevent
overusing data storage.

All data stored should be encrypted
and compressed.

Data Transfer

How much bandwidth utilization
is required?

Does the agent require
communication with a central
server? What happens if
communication is interrupted?
Is transferred data encrypted?
Is transferred data compressed?
If so, what are average
compression rates?

Bandwidth should average <100 Kb/
second during average activity levels of
the node.

In the case of a network interruption,
the agent should cache locally to
ensure no loss of data.

All data should be encrypted and
compressed in transit.

Analytics

eBPF and Contextual Data Collection

While eBPF is a powerful data source for observability, observability does not equate to security. To

meet security use cases, analytics needs data from eBPF and additional contextual data sources.

For this reason, this section is broken into two parts, analytics data and analytics tools. In this first

part, we evaluate the eBPF Security Monitoring solution by its level of visibility generated by eBPF

and other contextual information.

Analytics Data

It is important to evaluate the eBPF data and contextual data gathered by the solution to meet with

use cases.

Analytics Data Worksheet

Captured Activity Examples

Process information « Process start time

+ Process end time

« Parent process

« Children processes

+ Complete command line

« User and user rights context

Network information + Directionality

+ Source and destination IP address/hostname
+ Fully Qualified Domain Name

« Bytes transferred

« Connection duration

+ Related process

+ Host and container name

User information « User and effective user rights associated with each process

Host context + Hostname

« |P address(es)

* Memory utilization
« CPU utilization

« 0OS architecture

Container context For each container:

« Starttime

+ Endtime

* Process details

+ Network connection details

- The image the container launched from

Kubernetes context * Cluster name
+ Namespace

« Service

Pod

+ Replica set

Cloud provider + Cloud image ID
context * Instance ID

+ Region ID

+ Cloud tags

« Identity roles

Spyderbat - eBPF Security Monitoring Buyer’s Guide

Spyderbat - eBPF Security Monitoring Buyer’s Guide

-
o

Analytics Tools

This section evaluates how the buyer's team will interact with the collected data and how the

solution identifies areas of concern.

Analytics Tools Worksheet

Available Tools Questions to Ask What to look for
Search What information Search by:
is indexed and « Commands with command line
searchable by the arguments
solution? « Commands with user context
How are search results | = Processes with parent process context
presented? - IP addresses, hostnames, and fully
Can the results of qualified domain names
multiple queries be Combining search results into a common
combined for analysis? | analysis view expedites investigation.
Discover Is there a topology Be cautious of solutions that provide

view or visualization
of the running
Kubernetes
environment?

Does the visualization
support real-time and
historic views? What
length of history is
maintained?

visualizations that work with a few nodes,
but become challenging, if not impossible
to read with normal levels of activity. Ask
the vendor to show real-world usage in their
demonstrations.

Visualizations should be stateful as of each
change rather than periodic snapshots,
which may miss key events. The solution
should maintain a 90-day history of activity.

Container or

How granularly does

The solution should be able to capture

framework?

Does the solution
allow customization? If
so, what programming
level is required?

Application the solution identify the exact processes and network details
Profiling application drift at that deviate from validated states at
runtime? runtime. Solutions that only identify new
How are application packages miss ad hoc changes within
drift policies installed applications (e.g., supply chain
generated? compromise).
Solutions should suggest policies based on
actual application workload behaviors. Be
cautious of out-of-box policies for standard
applications due to the high levels of tuning
required to adhere to policies for actual
application use.
Security Do security detections | Security detections should follow a known
Detections follow a known framework, such as MITRE ATT&CK.

Be cautious of black-box machine learning
that makes it challenging to understand
why detections trigger or that auto-tunes
unresolved detections. Complex machine
learning models may be more challenging to
tune to each application environment.

Additional Considerations

False Positives

While completely avoiding false positives may be an unrealistic goal, the solution should provide

means for accounting for each environment in order to reduce false positives without relying on

manual tuning.

There are several reasons for false positives:

Criteria is too broad

If the criteria for detecting a security event is defined too broadly, the
detection will trigger on innocuous events. For example, the criteria
“shell executed in a container” may align to best practices, but in
practice, many applications use a shell to execute code.

Anomaly without
security context

Machine Learning identifies anomalies that are not necessarily security
relevant. For example, the first time an application connects to an S3
bucket may be a true anomaly, but also a legitimate new data source
for the application. New events occur frequently in cloud native
environments. How does the vendor reduce detecting true anomalies
without security relevancy?

Application-Specific
Default Policies

Vendors may include application-specific default policies that align
with their understanding of how the application should behave. The
nature of cloud native development is customization and iteration.
Does the vendor include tuning requirements to align application-
specific policies with actual usage?

Spyderbat - eBPF Security Monitoring Buyer’s Guide

-—
-—

The solution should employ methods for reducing false positives. Some methods are:

» Risk/Threat scoring: Risk scores consider other contexts such as the environment, user, etc. to
increase or decrease the severity of the detection.

* Detection chaining: Chaining individual, atomic detections into a “grouped” detection reduces
false positives by corroborating evidence of an attack. Be wary of the methods used to chain
detections as it may fall in the ‘Criteria is too broad’ category of false positives.

« Watch out for systems that “auto-tune” findings with Machine Learning algorithms. Product
feedback indicates these systems begin suppressing potentially legitimate concerns simply
because human analysts were not able to engage with the findings in a timely manner,
effectively ‘training’ the system to avoid these findings. Be sure to directly control alert tuning

to ensure alignment to organizational risk tolerance.

False Negatives

A false negative is a security detection that the solution should have identified but did not. The
most common reason for a false negative is the detection criteria are too narrow. For example, an
‘Indicator of Compromise’ that specifies the file hash for a file containing malware is easily evaded
when the threat actor makes a simple change to the file. In practice, false negatives occur from
over-tuning rules to become too narrow. When evaluating the methods for managing false negatives
(as described previously), consider the impact on false negatives since methods relying on tuning
risk higher false negative rates.

Use Cases

While it is important to assess the analytic capabilities of the solution, at the end of the day, the
solution needs to solve relevant use cases for the buyer’s organization. Below are examples of use
cases and how to evaluate the effectiveness of the solution.

Use Case - Supply Chain Compromise

A supply chain compromise is the manipulation of software, or its delivery mechanisms, before
receipt by the end user. Modern software development includes dependencies on both third-party
and open-source components, creating a greater risk of falling victim to supply chain compromise
even when following best security practices.

An eBPF security program can be used to detect evidence of a supply chain compromise early in

the development process to avoid the loss of confidential data or other damaging steps. There are

minimally two challenges in identifying supply chain compromise:

« Unless previously disclosed, the compromise is a ‘zero-day’ so vulnerability scanning will not
detect it.

« Insupply chain attacks, malware is often programmed to wait long periods of time to detonate
when used in production environments.

To detect supply chain compromise, the eBPF Security Monitoring solution will need to:

Profile application behavior Builds a profile of applications at runtime, using the process
details, network details, and user context.

Validated application behavior | Enables developers to validate correct application behaviors
to avoid accepting compromised behaviors into any baseline.

Identify application behavior Recognizes new behaviors (application drift) outside of

Present validated and deviated | Presents both the previously accepted workload behavior and
runtime behaviors deviated behaviors to expedite the investigation.

Spyderbat - eBPF Security Monitoring Buyer’s Guide

-
N

Spyderbat - eBPF Security Monitoring Buyer’s Guide

-
w

Use Case - Insider Threat

Insider threats are people with legitimate access to the network who use their access in a way that
causes harm to the organization. Examples include a disgruntled employee or a contractor with
compromised credentials.

While it is important to implement roles-based access controls in Kubernetes orchestration and
cloud identity access management, insider threats may have been provided explicit access or taken
advantage of broad access controls. An eBPF security program can identify evidence of insider
threat. The challenges of detecting this type of attack are:

« Identifying behavior deviations of legitimate users.

« Identifying correct user attribution when using shared accounts such as ec2-user or root.

To detect insider threats, the eBPF Security Monitoring solution will need to:

Track application behavior Captures all process details for the authenticated user that
with user context triggered the process.

Track changes to effective user | Linux commands such as sudo or su allow users to change

rights their effective rights without an authentication event.
Track and connect user Tracks the original authenticated user even if different
sessions across systems or accounts are used in subsequent commands or connection

containers methods (e.g., ssh, scp, etc.).

Identifies application behavior | Presents previously accepted workload behaviors and
deviation at runtime with user | deviated behaviors with user context (who did what).

context

Use Case - External Attack

While preventative security methods for patching known vulnerabilities reduce the attack surface
available to an external threat actor, it is impossible to completely cleans the environment of

all known vulnerabilities. Organizations need to prepare for the inevitable intrusion that evades
preventative security measures. Threat actors have varying financial and political motivations,
leading to customer and employee data theft, ransomware, cryptojacking, and network disruption.

An eBPF security solution should identify evidence of intrusion to enable quick containment and
remediation of attackers that enter the environment. The challenges with identifying external
attacks are:

+ Reducing false positives while avoiding false negatives.

« Slow and low attacks that span weeks to months.

To detect external attacks, the eBPF Security Monitoring solution will need to:

Detecting behaviors or The solution should follow a known framework for identifying

patterns of known attack attack tactics and techniques.

tactics

Connect detected attack The solution should automatically identify connections

tactics across time between attack tactics and techniques.

Suppressing false positives The solution should reduce false positives to avoid

with methods described overwhelming the team when responding to real threats.

previously

Present first responders with First responders need context of what occurred before,

context between, and after detections, as well as where, when
these detections occur within the environment or across
environments.

Spyderbat - eBPF Security Monitoring Buyer’s Guide

-
i

Spyderbat - eBPF Security Monitoring Buyer’s Guide

15

Automated Response

Due to the ephemeral nature of our cloud environments, and as we enter an age of Al assisted

attacks, it becomes increasingly critical that our detection solutions are also capable of automating

response.

The effectiveness of the detections is paramount. Without accuracy, it is impossible to enable

automation. Confidence in the accuracy of detections enable the transition to automated responses

that contain and, in some cases, even fully remediate threats.

Automated Response Worksheet

Questions to Ask

What to look for

Response
Execution

Where do responses
execute?

What permissions are
required to enable
automated responses?

Automated responses should execute on
the worker node itself. Network-based
responses risk interference with systems
and network-based access controls.

Response Library

What types of
automated responses
are available?

Do responses leverage
contextual data (e.g.,
parent processes,
namespaces)?

While it is positive for the solution to
include a broad set of available responses,
ultimately responses need to align with the
buyer's specific use cases.

Context is important. Killing an individual
process may not contain a threat if malware
is left running to retry, or the threat actor
still has access to backdoors.

Implementation

Does enabling
responses change
the agent type and
Installation process?

Be cautious if the response requires
additional licensing or changes the
deployment type.

Customization

Can automated
responses be
customized?

If so, what skill or
programming level is
required?

Solutions should support custom scripts
appropriate to the environment and the
buyer’s use cases.

o [] []
Third-party integration
From small companies just building their security program to large organizations with established
security infrastructure, the eBPF Security Monitoring solution will need to support bi-directional

integration into existing and future investments and workflows.

Third-party Integration Worksheet

Questions to Ask What to look for

Outbound integration The solution should adhere to each organization’s

+ SIEM, SOAR, and ticket operational workflows, providing full context to their
management systems raised alerts with the ability to quickly return to the

« Pagerduty, Slack, Teams eBPF Security Monitoring solution for further analysis,

when required.

Inbound integration The solution should be able to consume additional
+ Kubernetes API context regarding eBPF activities.
+ Cloud Provider (e.g., cloud tags,

hostnames)

Spyderbat - eBPF Security Monitoring Buyer’s Guide

16

Day /

Operations

Spyderbat - eBPF Security Monitoring Buyer’s Guide

17

Maintenance and Support

Maintenance and Support Worksheet

Maintenance

Questions to Ask

What levels of support does
the vendor offer?

Are professional services
included?

What to look for

The solution should support a
maintenance operational model that
aligns with the buyer, whether business
appropriate time zones or 24x7.

Understand the costs to upgrade and
expand.

Data storage

Is the solution Saa$S or on-
premise?

Are data storage
responsibilities the
customer’s or vendor's?
What are the data retention
policies?

Can all data be removed
should the service be
discontinued?

On-premise storage and management
costs can be significant, providing an
advantage to Saas solutions. Ensure
Saas solutions leverage regional data
centers and abide by any required data
sovereignty regulations.

Open Platform

This document previously covered third-party integrations. Support for custom development is

equally important. A bi-directional APl enables additional context inputs outside the vendor’s

supported integrations and the ability to display information appropriately to different consumers

within each organization. When evaluating the vendor’s API, it is important to understand:

« What is and is not exposed.

+ What is and is not documented.

« Includes working examples in the documentation.

+ How the API is impacted during upgrades.

Conclusion

An eBPF Security Monitoring program is a critical component for organizations embracing cloud native environments.
The adoption of eBPF as a powerful observability tool has the potential to revolutionize security event analysis and
incident response by empowering organizations with critical insights at runtime. By leveraging eBPF's capabilities,
organizations strengthen their cloud native security posture, mitigate risks, and protect their valuable assets
effectively.

Organizations should choose a solution for their eBPF Security Monitoring that excels at identifying security issues,
aligns with continuous development workflows and security operations, and integrates with existing security

investments.

About Spyderbat

Marc Willebeek-LeMair and Brian Smith stood in the security operations center for a large managed security
services firm, observing security analysts respond to alert after alert in a race to meet with the firm's service
level agreements. As each alert came in, an analyst immediately delved into logs and audit records in @ manual
attempt to recreate the scenario and answer fundamental questions - is this a false positive, and if not, what
is the scope and entry point of the attack, etc. The manual effort was an exhausting search across esoteric

log data manually ‘connecting the dots’, assuming key events were even logged. Not surprisingly, results often
ended inconclusive. The observation led Willebeek-LeMair and Smith to an idea.

Why is every security program facing an uncomfortable tradeoff between accepting high false positive rates,
requiring large teams to manually investigate, or tuning signals down and accepting the risk of false negatives?
The answer, they concluded, was context.

Alerts trigger from data meeting specific criteria or the parameters of an anomalous outlier, without any
understanding of what activities both led to or followed the trigger.

This security formula is ineffective even in traditional networking environments where there are a high number
of security controls providing detailed telemetry. What happens in highly ephemeral environments where
variables constantly change, and security controls are sparse?

Willebeek-LeMair and Smith realized that cloud-native environments needed a constant state recorder that
went beyond audit records - it had to know the causal sequence of activities for every activity.

Spyderbat was founded with this idea.

Using eBPF, Spyderbat constantly builds a Behavioral Context Web that connects every activity to each other
along with system, cloud platform, container, and Kubernetes context. Using this Web, Spyderbat simultaneously
looks for deviations from ‘known-good’ workload behaviors while also connecting otherwise disparate security
concerns to identify ‘known-bad’ attack tactics. The result is a cloud-native runtime security solution that
removes the uncomfortable trade off by scoring every causal sequence of activities by its risk, exponentially
reducing false positives, and surfacing truly concerning sets of activities that programmatic actions can remedy
or notify the correct groups across DevOps and SecOps.

Learn more about Spyderbat at www.spyderbat.com

https://www.spyderbat.com/

